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1. Introduction

This paper is a survey of a rapidly growing literature on
methods for solving and estimating dynamic stochastic discrete choice
models. The major characteristics of this literature are: (1) the optimiza-
tion problem is forward looking and contains some stochastic elements;
(2) the choice set only takes on discrete values; (3) the approach is struc-
tural, that is the parameters 1o be estimated come from objective func-
tions (lastes and/or technology) and constraints; and (4) the econometrics
is closely connected to the theory, and specifically. the error structure 1S
motivated in the problem as an integral part of the optimization.

The importance and usefulness of discrete choice models is now well
established and such models are routinely applied. While it has always
seemed that dynamic optimization under unceriainty would provide a
better description (and prediction) of behavior, until recently methods did
not exist 1o consistently (structuraily) incorporate dynamic elements into
discrete choice models. It is this task that the new literature addresses.

The major tool for these new methods is dynamic programming (Bell-
man 1957). Dynamic programming is a recursive solution method for
optimization problems which have a dynamic structure, and can be ap-
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plied with a discrete, continuous or mixed discrete-continuous choice et
The major insight of dynamic programming is that the solution of 4 winl-
tidimensional problem can be reduced 1o a recursive solution of & e-
quence of two period problems.

To illustrate the idea of dynamic programming and, more impontantly,
10 illustrate the contribution of the literature we survey, consider the very
simple problem of when to consume an indivisible good given an endow-
ment of the good. Let d(1) = | if the good is consumed at time ¢, d(1) = 0
otherwise, and R(d(1), . .., d(T)) be the reward or utility from consuming
the good at the T possible times. The direct solution of the problem wquld
require that we make T comparisons of utility, i.e., R(1,0....,0), R I,
0.....0),....R0,0,...,1,0), R(0,0....,0,1). However, suppose
we proceed as follows. If by the beginning of period T the good ha‘sg not
been consumed the only possibility is to consume itat T, so let ViIy =
R(0,0, ....0,1)whichis the maximal lifetime utility at T given 1hc state
at T. Suppose now that we have reached T — 1 without consummg’ ihe
good. If we consume it at T — 1 then utility is R(0. 0, ..., 1.0) = R -
1), while if we do not then utility is R(0,0,....0, D)= V(@) Denne
maximal lifetime utility at T — 1 as V(T = 1) = max{R(T = 1), VTN,
which is the maximum of utility if we consume the good at T - 'l and
maximal utility if we do not. Similarly if we have reached T — 2 without
consuming the good, then if we don’t consume itat T — 2 we obtarn V(T
— 1), while if we do, we obtain R©,0....,1,0,00 = R(T - 2). ’I'hust our
maximal utility at T = 2 is V(T — 2) = max{R(T — 2). Y(T - l),._ln
general, then we can continue to work backwards recursively makmg
pairwise compansons, with maximal utility at any r < T ot?cynng the
recursive cquations V(1) = max(R(7), Vi + 1)). The dimensionality pf
the problem has been reduced from a T-wisc comparison to T — i paif-
wise com sons.

This cxr;innplc illustrates a very simple optimal stopping problem. The
dynamics aris¢ because the decision at time t explicitly dcp;nds on pnor
decisions, namely we can only consumc the good now if we did not
previously consume it. The individual decides whether or not to coqsumc
the good at 1, given that it has not been consumed up to £, according to
whether R(1) Z V(1 + 1). One might think of V(1 + 1) as the rescrv.auon
reward or utility at £ + 1, i.c., the reward if one postponcs consumption of
the good.

The above mode! predicts that if all individuals have the same reward
function, they will all make the same decision. Suppose we have wita on
when a sample of observably homogencous individugls_cac.h consgmcd
the good. It is quite likely that the data will reveal vanation in the t.ang
of consumption, in which case the model would glca_rly be rejected. One
way to allow for heterogeneity in observed behavior i1s to assume that the
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reward function is stochastic, namely given by R(1} + e(r), and to assume
that individuals draw at each ¢ from the density function for €(r).' The
analogue of the lifetime utility function under uncertainty is V(1) =
max(R(1) + e(n), E(V(1 + 1)|1(1)) where (1) is the information set at ¢
and E(V(t + 1)|{Q(1) is the conditional expectation of V(1 + 1) taken over
all future e's. Now, under the further simplifying assumption that the
e(r)'s are i.i.d. over time, the model predicts that the proportion of indi-
viduals who choose to consume the good at ¢ (given the good has not yet
been consumed prior to f) is given by the probability that each of their
draws of e(r) exceeded E(V(1 + 1)|1(1)) — R(1). The assumption that e(s)
is known to the individual but not to us makes the observed decision
random from our perspective. A companison of these predicted probabili-
ties over time to the corresponding observed individual choices or sample
proportions forms the basis for the estimation of the reward function. It is
this extension of the use of dynamic programming to estimation that is the
coatrnibution of this new literature.

We begin the paper in Section 1l with a general specification of a dy-
namic stochastic discrete choice model that encompasses all existing
studies in this literature. We show how the general framework nests, in
order of presentation, a job search model (Wolpin 1987}, a patent renewal
model (Pakes 1986), an engine replacement model (Rust 1987), an armed
services retention model (Gotz and McCall 1987), a labor force participa-
tion model (Eckstein and Wolpin 1986, Gonul 1987), a retirement model
(Berkovec and Stern 1987, Rust 1987), a fertility model (Wolpin 1984,
Montgomery 1988, Hotz and Miller 1989), and a job matching modecl
(Miller 1984).% Scction 111 discusses alternative solution methods for these
types of dynamic programming problems. We explicitiy demonstrate so-
lution methods for several of the preceding models. In Section IV we
explain the maximum likelihood method of estimation as it is applied
to these models and bnefly touch on an alternative estimation method,
the method of simulated moments. Section V brefly surveys two semi-
reduced form approaches to estimating the structural parameters recently
advanced in Hotz and Miller (1988) and in Manski (1988 and 1990 forth-
coming). We also suggest several alternative approximation mcthods. A
standard search model is used as an example in each of the sections, so
that the reader can follow a familiar single model from its initial specifica-
tuon through its estimation. The final section summarizes the paper and

I. The additivaty of the disturbance in the current retum function is not necessary.

2. Ve begin with the search model because it is the exampie we use 1o illustrate the solution
and esumation methods throughout the paper. The rest of the ordenng is for pedagogical
rcasons, in part due 10 the compiexity of the models. and does not indicate the relapive
importance of the papers.

Fa

concludes with a few additional topics in labor economics that can be
explored using the methods discussed here.

II. A General Model

We consider a general model of ‘I discrete choices over T
discrete periods of time, where T is either finite or infinite. In each perioc
an individual chooses one of the / possible alternatives (e.g.. cmploymeq:
status, occupation, ctc.), where the indicator d{r) = 1if alle_maler i
chosen at time 1 and d;(1) = O otherwise, that is, if alternative i is no!
chosen by the agent. Alternatives are mutually exclusive, i.e., Zd/(1) =

1.’ The objective of the individual at any time 1,7 = 0, I, . ... T, is 1c
maximize
T
M E[Z B D R,(nd.-(j)mm]
=t €1 -

where 0 < 8 < 1 is the individual's discount rate, E()is the malhcm?lxcal
expectations operator, {1(1) is the individual’s informalmq set at time f
which includes ali past and current realizations of the vanables that di-
rectly or indirectly affect the value of Equation (1) and _R,~(l? _is a random
variable representing the individual's reward if allc'rnalnvc.: iis chqscn at
time 1. R(s) for s =< 1 obviously belongs to the individual's information sei
at time 1, {X(1). ' »

Maximization of (1) is accomplished by choice of the optimal sequence
of control variables {di(nN}ie,fort =0, 1, ..., T which are functions of
information that is available when the decision is made. Define the max-
imal expected value of the reward at time ¢

T
> B"'R(j)lﬂ(t)]

J=1

2) V) = sup E[

i)l er

where R(j) = Z,esRi(j)dilj)is the actual reward at time j. The function .V
depends only on the information set at time ¢, and obeys the dynamic
programming cquation*

(3) V) = max {L;V(Q)}
€4

where L; is the alternative-specific operator defined by

(4) L,VQUD) = R(n + BEWVU + () = n, =0....T.

3. Altematives can always be redefined to satisfy .lhis usun.\p(ion. )
4. The sup operator is equal to Lthe max operator if the maximum exists.
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The dynamics of the problem are duc to the dependence of the function V
at time 7 + 1 on the choice of &, i = 1, . ... [ at time ¢ and possibly
before.

This general discrete choice problem describes all of the different struc-

turally estimated dynamic discrete choice models found in the literature .’
We now turn to a description of these models.

A. Opdmal Stopping Models

Optimal stopping models are special cases of discrete choice dynamic
programming models. We shall now show how the models of optimal
stopping that exist in the literature fit the above gencral model. The most
familiar optimal stopping modcl in economics is that of job search (Lipp-
man and McCall 1976, Morteasen 1970).

1. A Job Search Model (Wolpin 1987}

Wolpin (1987) structurally estimated a standard two-state job search
model in which a wealth-maximizing individual faces a known wage offer
distribution, a constant cost of search, and a known per-period probabil-
ity of receiving a wage offer. In ecach period of a finite horizon the individ-
ual decides whether to accept an offer if one is received. If an offer is
rejected or if none is reccived the individual continues to search. Rejected
offers cannot be recalled.

To place the search model in the framework of the previous sec-
tion. note first that there are two alternatives, I = 2. Let d,(t) = 1 if
the individual is not employed (searching) and d (1} = 0 otherwise, and
d-(r) = 1 if the individual is employed and d.(1) = O otherwise.® The
reward function is given by

(5a) Ry(1) = b,
w(1) fdi¢t -1

—

(5b) Rp(1) =

Rt — 1) ifdy(t — 1) !

where b is net income if the individual searches (unemployment compen-
sation minus search costs) and w(1) is the wage at time 7. If the individual
is not employed at ¢, a wage offer is drawn with a known probability p

S A formal treatment of this type of problem exists, for example, in Whitue (1985): as well
as in other texts on dynamic stochastic programmung.

6. In the case of I = 2 (two alternatives) it 15 morc convenient 10 use one wndicator because
d,(1) + dy(n) = 1. But, for the general case (/ > 2) the general notation 1s less cumbersome
and so we employ it througbout the paper.
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from a time-independent distribution function F(w{(1) which is also
known.” With probability 1 — p no wage offer is received and net income
is equal to b.

The search model described above is an example of an optimal stopping
problem, i.c., once an offer is accepted the individual will never return 10
the nonemployment state. The stopping property results from the as-
sumption in Equation (5b) that no new wage offers are received after a job
is accepted as indicated by the fact that the reward at 7 is the previous
period wage if the individual is employed at 1 = 1.} Properties of the
solution both in the finite and infinite horizon cases arc presented in

Lippman and McCall (1976) and the economics literature contains numer-
ous extensions of the basic model.

2. Patent Renewal (Pakes 1986)

Pakes formulated and estimated an optimal stopping model of paient re-
newal. Each period over a finite horizon a patentee must decide w~hcther
or not to pay an annual renewal fee in order to keep the patent.in Yo~ 1f
the renewal fee is not paid then the patent is permanently cancelec

In terms of the general model there are two choice variables (! = 2),
d,(1) = 1if the patent is not renewed and d, (1) = 0 otherwise, and d,(1) =
1 if the patent is rencwed and dy(1) = 0 otherwise. The reward for cach
choice is given by .

(6a) Ry(1) 0,

max(8R,(t — D, 20} — ()
with probability 1 — ¢
0 with probability PRl

—aRr— 1)

(6b) R2()

1

c(r) is the renewal cost of the patent at time f, ¢>0and 0 < & < {
are known parameters, z(1) is a random variable with density furncuon
glz.n = o exp{- (¥ ¥ zlo(1)) and o(f) = ¢'~'o, where o, v and &
are known parameters. In addition R3(1) is assumed lognormal wup mean
n and standard deviation og. Pakes allows this initial draw to be different
for each firm. The idea is that with some probability which depends on the
previous period return, e~ *Ri=1 the patent is determined to have no
value, while with probability 1 — e~ %Rt =1 the patent cither depreciates
in value or a new use is found and the patent value is z(1).

7. Wolpin actually assumes that p is duration dependent in a known way, but for cxposi-
tional purposes we ignore this minor complication. ) ) )

8. For an cxample of a model in which offers arc received whike on l.he job, see Bun'_lell
(1978). Sce Flina and Heckman (1982) for a discussion of search models in a conunuous ume

setung.
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The patent model, like the search model. is an optimal stopping prob-
lem because of the institutional restriction that a lapsed patent cannot be
renewed, i.e., R:(r + 1) = 0if dy(n) = 1.” Pakes's model is different from
the job search model of the previous section mainly due to the assumed
serial correlation in the reward function, R,(1). That is. the reward from
the renewed patent at time r — 1, Ra2(r — 1), affects the distribution {from
which the return on the patent is determined at time ¢, while the distribu-
tion of the wage, w(r), in the search model, was assumed independent of
past realizations and decisions. This specification by Pakes has important
implications [or the solution and estimation ol the model.

3. Engine Replacement (Rust 1987)

Rust models the optimal replacement of bus engines. As in the previous
model there are two alternatives (/ = 2), d,(t) = 1if the decision is not 1o
replace an engine, d,(r) = 0 otherwise, and dy(1) = 1 if the decision is 10
replace the engine, d,(1) = 0 otherwise. The reward function is given by

(7a) Ry(1) = —cx(n) + (),
(7b) R (1) = —RC — c(0) + (1)

where c(x(n) is the operating cost of a bus having an engine with x(r)
miles. RC is the replacement cost and g,(1) (i = 1, 2) are random vanables
that affect (additively) the reward function R;(¢) and are known 1o the
agent but are not observed by the econometrician. Rust assumed that
Harold Zurcher, the superintendent of maintenance at the Madison, Wis-
consin Metropolitan Bus Company. decides about engine replacement by
maximizing (1) with T = « using the reward function (7) and the law of
motion for x(r) specified below.

To complete the model, Rust formulated the evolution of engine mile-
age as a nondecreasing stochastic process governed by a Markowvian tran-
sition probability law

8, exp(B(x(r + 1) — x(1))
ifdy(t) = land x(r + 1) = x(1)
(8) Plx(r + D]x(r), dy(r), dy(1), 82) = {8 exp(Bx(r + 1))
ifdy(t) = tand x(z + 1) =0
0 otherwise
where 8, is a parameter.

The engine replacement problem is also an optimal stopping problem,

9. However. unlike the search model. because of the stochastic naturc of the reward func-
tion, in particular becausc of z. an agent might wish 10 renew a fapsed patent.
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Eckstein and Wolpin

i.e.. once an engine is replaced it will never be re-used as long as the same
structure applies, because mileage, x(1), is nondecreasing over time and
the replacement cost c(x{(r)). is increasing in x(1).

Rust generalized the model to ] decision variables. Two critical as-
sumptions characterize his specification for the general case as well as for
the case of / = 2:

@ e n.i = 1,....1 isadditive in the reward function of each alternative
i and each £,(r) has an identical and independent over time extreme value
distribution.

(ii) The transition density function of the vector of observed variables
(x(1)) is conditionally independent of €;(2), i = 1.....I (Rustdefines this
as a Conditional Independence Assumption, since it does not require that
e,(t + 1) be independent of x(t+ + 1) and x(¢r + 1) may depend on x(1)):
plx(t + 1), e(r + Dix(0), e() = qe(r + Dix(t + D) plxtt + 1) x(1)),
where (¢ + 1) is a vector over the I alternatives.'®

Unlike Pakes's mode! where the unobservable is serially correlated.
here oniy the observed variables can be serially correlated. This assump-
tion is critical for the algorithm that Rust developed to solve the mode:.

4. Air Force Retentions (Gotz and McCall 1986)

Gotz and McCall formulate and estimate a dynamic model of the stay/
leave decision confronting officers in the U.S. Air Force. The essential
features of the model, using our prior notation with d,(r) = 1if the officer
leaves and zero otherwise and do(r) = 1 if the officer stays and zers
otherwise, are:

(9a) R, (1) = r(n(m(n) — ax(0)) + w(r)
(9b) R:(1) = mf(l) +z + al)

where m,(f) is the level of military pay at grade level k with ¢ years of
service inclusive of basic allowances a (1), r(1) is the fraction of net (of
allowances) military pay received upon retiring from the service (r(t). =0
for t < 20). w(r) is the civilian wage received upon retirement, Z is an
individual-specific nonpecuniary reward to military service and ex(0) is 2
transient nonpecuniary reward. In addition an officer faces _a.promou.on
transition probability matrix, Pyy() which refiects the probability of bgmg.
promoted from grade level k to j after ¢ periods of service. T.hcre s &
terminal period given by the mandatory scparation years of service which
is grade-level specific. Note that the terminal period is itself random be-
cause future grade levels are not known with certainty. Gotz and McCall
assume that z is distributed as extreine-value and e is i.i.d. normal.

10. Independence implies conditional independence.

569
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B. Sequential Choice Models

In the class of sequential choice models the individual's optimal decision
may be characterized by switching between activities all of which, in
contrast 10 optimal stopping models, may have been previously chosen.

1. 'A Labor Force Participation (LFP) Model (Eckstein und Wolpin
1986 and Gonul, forthcoming).

Suppose that the individual can choose between (wo alternative employ-
ment states (/ = 2): d,(r) = } if the individual does not work tn the labor
markel, d,(1) = 0 otherwise, and d-(t) = 1 if the individual works in the
labor market, dy(1) = 0 otherwise.''

The reward function is:

(10?\) R|(l) = a; + Y(’)»
(10b) R-(1) = a» + w(i) + YD)

where a, > 0 is the monetary equivalent of the psychic value of home
time. Y(1) is nonearned income, a, < 0 is the monetary equivalent of the
psychic disutility of work, and w(r) is the wage received while working.
The wage is a random vanable assumed 1o depend positively on accumu-
lated market work experience K(1). Specifically, Eckstein and Wolpin
assumed that the wage was log-lincar in experience,

(1) Inw) = Bo + B KU — 1) + e(D)
where the law of motion for experience is given by
(12) K@) = K(r — 1) + da21).

Eckstein and Wolpin further assumed that e(1) is a normally distributed
random variable with zero mean and a constant variance (o). They in-
cluded other exogenous variables, e.g., schooling, in reward function (10)
and in the wage Equation (11).

Thg main dynamic aspect of the model arises because of the effect of
experience (K(r)) on the wage, and therefore on fulure work decisions.
Tht_: difference between the job search model and the labor force partici-
pation model is in the structure of wage offers. In the latter a new inde-
pendent wage (conditional on expenence) is drawn regardiess of whether
an offf:r has already been accepted. In the job search model no new wage
offer is forthcoming if the individual had previously accepted an offer.
Hence, the labor force participation model allows for workers to alternate

11. We adopt the framework in Eckstein and Wolpin rather than thatun Gonul because it s
sunpler 10 cxposit. -

2N
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between work states depending upon the current wage offer and taking
into account the effect of their current decision on future wages.

2. A Retirement Model (Berkovec and Stern 1988; and Rust 1988)

Berkovec and Stern estimate a retirement model which allows fci (.ve
alternatives (I = 5), d, (1) = 1 if the individual works full time at a.. nld
job, zero otherwise, dq(1) = 1 if the individual works full time at 3 fiew
job, zero otherwise, dy(r) = 1 if the individual works part time at an
old job, zero otherwise, dJn = 1 if the individual works part tim: - a
new job, zero otherwise, and ds(1) = 1 if the individual retires. 7 all
alternatives are feasible at each period; for example, an individual . .50t
choose to work full (part) time at an old job if the individual wss not
already working full (part) time. The reward functions are:

WF(I, K;.X) —¢cJ + ep(l) + pF fori = 1,2,
3, 4,

i

(13a) Ri(n
(13b) R,
(13¢c)  Rs(n

Wit Ko X) = cJ + g,(0) + pp  fori
Welt, X) + erlt) + pr

where Wy and W, are the deterministic component of wages when em-
ployed full ime and part time, respectively, K, and K, are the number of
prior periods worked full time or part ime, respectively, on the current
job (by definition K, = Ko = 0), X(1) are other exogenous vanables such
as schooling, health, race, and age, 7 is an indicator function equal to on¢
if K, = 0, forall i, and zero otherwise, reflecting job mobility costs, Wg is
the monetary equivalent of the psychic value of leisure, e, £, and £, are
i.i.d. random components of the rewards. and g5, o, and pg are ind: aid-
val specific permanent components of the reward. These last com>onents
introduce unobserved correlation in the reward over time, i.e . . =nal
correlation in the aggregale disturbance. The random errors (the = ¥, are
assumed to be distributed as extreme value while the p's are assumed 10
be normal. Berkovec and Stern assume Ihe state variables, in particular
health, to be perfectly foreseen.'? Except for some exogenously imposed
permanent retirement age, transitions into and out of retircment are feasi-
ble, i.e.. ‘‘temporary’’ retirement is potentially an optimal state.

3. A Fertiliry Model (Wolpin 1984: Monigomery 1988; and Hotz

and Miller 1989)
In Wolpin’s (1984) fertility model the individual faces two altematives,
d,(1) = 1if the decision is to have a child, dy(1) = 0 otherwise, and d2(f) =

—_— - R
12. Note that Rust’s retirement mode! allows the state variables to follow a Marxovian
transition probability matnx. :

571
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1 if the decision is not to have a child, and d,(r) = 0 otherwise. Letting the
stock of children at time 1 be (for simplicity abstracting here {rom the
mortality of children assumed by Wolpin)

(14) M@ = . dy(s),

=0
Wolpin's specification can be written as
(152) Ry(1)

(15b)  R,(1)

i

UM — 1) + 1, x()) + (DM — 1) + 1),
UMG — 1), x(1) + e(oMl — 1),

I

where x(1) is the level of consumption at time 1. The dynamics arise
because today's fertility decision affects the current stock of children
which. because children are durables, affects future utility. The main
qiﬂ’crcncc between this mode! and ail of the models previously described
is that the error, (1), is the same for both choices and is proportional lo
the state variable, in this case the stock of children. Wolpin assumed that
e(1) is normal and independent over time."?

Hotz and Miller model the joint labor supply and fertility decision. The
fertility component includes three alternatives, d,(1) = 1 if the couple
contracepts (imperfectly), dx(f) = 1if the couple does not contracept, and
d4(r) = 1 if the couple sterilizes. The conception probability depends
explicitly on contraceptive decisions; sterility is irreversible. The reward
functions are:

(16a) R (1 = Ulx(t), (), M(r — 1)) + dy(Dey,,
(16b) R (1) = Ulx(n), I(n), MUt = 1)) + da(t)ea,.
(16c)  Ry(1) = Ulx(n), 1(1), Mt — 1) + dy(f)eslr).

x{¢) is family consumption and /, is the mother’s leisure time. M(z — D1s
lr?c s.crvicc flow from the existing stock of children which, unlike in Wol-
pin, is assumed to depend on the age distribution of the existing children.
Specifically, M(t = 1) = 2L, a;b,_; + a2 Z.512 b, ;. where b, = | ifa
chd is born during period 1 — i. Hotz and Miller further assume that
existing offspring require maternal time, where the amount of the time
devoted 10 a child is age-specific. Goods inputs to children are assumed to
depend only on the stock of children, independent of their ages. The

13. Wolpin also allowed for a permanent individual-specific unobservable which could take
on two posuble values, i.c.. individuais could be of two types in terms of their marginal
utihty 9( children. See Heckman and Singer (1984) for a discussion of methods of introduc-
ing wndividual-specific unobserved heterogencity. '

Fa

woman faces a stochastic wage which is only imperfectly forecastabi«.
The ¢,,'s (i = 1, 2. 3) are assumed to be independently and identically
distributed over time and contraceptive choices. The joint distribution at
any time 1 is assumed 1o be multivariate extreme value.'* It should be
noted that the additional complexity evident in this model requires a
different estimation method than the other models presented in this sec-
tion. Discussion of their method is deferred to Section V.

4. Job Maiching (Miller 1984) and Brand Choice (Eckstein, Horsky,
and Raban 1988)

Miller (1984) extended and estimated the job matching model of Jovano-
vic (1979). Eckstein, Horsky, and Raban (1988) used the same structure
for estimating a dynamic brand choice model. Both assumed an infinite
horizon so that the optimal decision rule is stationary. The decision vari-
able is d,(1) with di(1) = 1 if the individual chooses alternative i and d;(1) =
0 otherwise, and i € I. The reward to the individual for choosing alterna-
tive i (a job within an occupation or a brand of a product) out of / alterna-
tives is

(A7) R(D = ¥ + & + o;e(0.

&(n) is a deterministic reward that may depend on time, is known with
certainty and is common (o alli€ . gisa match-specific random reward
that distinguishes choice i (job or brand) from the other alternatives, but

is not directly observed by the individual either before or after i is chosen.

Note that the reward function for a given alternative is unaffected by the
past choice of any other alternative. The individual has a prior on the
distribution of £; assumed to be normal with mean v, and standard devia-
tion 5,. The last term is an unobserved random shock to the reward where
o, > 0 is known and g{r) has a standard normal distribution and is inde-
pendent and identical for all 1 and i. The individual observes R;(1) and wit)
and tries to learn about &, the true reward associated with choice i. The
dynamics arise because of this leamning, i.c.. remaining with a firm pro-
vides not only an immediate reward but also information about the future
reward in the firm.

Since y(r) is known and common to all i, the decision depends on the
observed difference Ri(f) — (). Given the independence among alterna-
tives and over time, beliefs about the reward from the ith choice can be
characterized as a conditional normal distribution, N(,(n), 8:(1)), where

14. Monlgomery also estimates 3 contraceptive choice model. His formulation is & direc’

application of Rust's {ramework.

R LU [ b F s st A e b
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the Bayesian (e.g., DeGroot 1970) updating rule implies that

-1
(18) (0 =[5+ oi S (Ras) - o))
3=0

5

x (87 + Myt = Do
5,(1) = (81—2 + M1 — 1)0‘—2 -2

N
3
where
=1

M= 1) = D ds).

s=0

In Miller's model two jobs are assumed to be in the same occupation if
.nd only if they have the same values for v,, b,, and o,, and there are
assumed to be a large number of jobs in any occupation. In each penod
the individual chooses an occupation from which to sample a job, drawing
a match-specific value &, from the distribution N(v.. 0,) and a random
shock o,e;(1). The longer the individual remains on that job, the more
information is obtained about £,. Note that in (18) the vanance is dechn-
ing in M,(r — 1), thus inducing a nonstationarity. Only one job can be
sampled in any peniod and there is no recall. In the special case where
o, = 0and (1) = 0, Ri(1) = & and because R,;(r) is observed, learning 1s
completed in one period. In this case, the optimal policy follows an op-
timal stopping rule as in the job search context; that is, once a job is
maintained past one period (after learning is complete) it will be main-
tained forever.

C. A Brief Summary

From a methodological point of view, the important difference between
these models is in their stochastic structure. As we shall see, the choice of
error structure is crucial for the way these models are solved and esti-
mated. In the table below we present a summary of the models described
above in terms of the independence (/) or nonindependence (N) of the
error term over several dimensions. The oaly special feature of the table
is that we separate individual-specific unobserved heterogeneity (Column
3) from serial correlation (Column 2). The reader should note that this
lable does not indicate necessarily that the methods employed in the
particular models are limited to the error structure imposed, although that

may be true in some cases. The actual limitations will be addressed in
later sections.

Fa

Eckstein and Wolpin

Table 1
Summary of Stochastic Assumpiions

Time or Age Alternatives Individuais®
Wolpin (search) 1 1 1
Pakes N 1 I
Gotz and McCall 1 1 N
Rust 1 I 1
Eckstein and Wolpin 1 1 N
Gonul 1 1 ]
Berkovec and Stern 1 N N
Wolpin (fertility) 1 N N
Hotz and Miller 1 1 N
Montgomery 1 Il N
Miller N 1 N
Eckstein, Horsky, and Raban N ) 1

a. Nonindependence takes the form of unobserved permancnt individual-specific ~
heterogencity.

1II. Solution Methods

A general characterization of the optimal plan is possible I‘Qr
some models without the existence of a closed form solution. Howcv_er.}m
order 1o estimate the parameters of any of the models prescn}cd in the
previous section we have to obtain a closed form (not ngccssanly anaiyt-
ical) characterization of the solution for the optimization problcr_n (\‘)..
This task has occupied applied mathematicians for many years and is sl
an active research area. )

The actual computation of the solution may be technically differen: for
finite horizon and infinite horizon models (sce, €.8.. Bertsekas 1976 and
Whittle 1982). In the finite horizon case, the method is 2 backwar_ds se-
quential solution of Bellman’s (1957) cquation. Specifically, Equation {4)
can be written as follows:

(19a) L,;v(§X(1) = R + BE(V(Q2(s + mldin = 1
fort=1,...,.T— 1,ie!
and

(19b) L;V(QUT)H = R(MIiEL

R L niiadan T aet AN et - T e Pem reemeeTTe i e o
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The solution for L;V(£1(1)) is obtained by substituting recursively from T.
The existence of a unique optimal policy characterized by a sequence of
reservation values Rj(¢), ¢+ = 1... .. T has been proved in the literature
when R,(r) follows a general stochastic process (Whittle 1982, Vol. I1. Ch.
29). For stationary or nonincreasing processes of R,(r). the sequence of
reservation values is monotonically decreasing.

For the infinite horizon case we scek a lime-independent value for
L, V(1) for cach i € [ that satisfes

(20) L,V() = R,(») + BE[V@Q)|d, = 1}.i=1..... 1.

It can be proved that under the standard regularity conditions assumed
here a steady state solution exists and is unique. This solution is time
independent and is consistent with any economic problem in which the
researcher assumes that the optimal choice is independent of the parucu-
lar peniod of life of the individual.'?

In order to demonstrate the solution method in each case it is useful to
simplify the problem. We begin with the two-state search model.

A. Finite Horizon (T < =) Search Model

In the scarch model L,V is the value function when (1) = 1. i.e.. the
individual is not employed. and L,V is the value function when d-(1) = 1,
i.e., the individual is employed.

1n the last period, T, the problem is static, i.e., Equation (19b) becomes

(2la) L,V(T) = b,
(21b) L, V(UT)) = w(T).

It is clear that dy(T) = 1 if and only if w(T) = b.
At time 1 < T Equation (19a) can be wntten as

(22a) L, V(1) = b + BE[V( + Dld\(0) = 1],

[}

and

(22b) LyV(1) = w(t) + BEIV( + D|dy(0) = 1].

i

Because we know that the problem has an optimal stopping solution,
di(t + 1) = 1ifda(r) = I; further, Ry (r + 1) = w(r) if do(r) = 1, so that

T
LV = wit) p_ B~

S f

15 Whittle (1982, Vol. 11) provides a formal denvation of the propertics of optimal stopping
problems for finste and infinite honzon problems. )

I
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The solution to the search problem consists of a sequence of reservation
wages w*(r), values of the wage above which a job is accepted and below
which it is declined, such that if w(f) = w*(r), dy(s) = L.s =1, and if wis)
< w*(1) d,(r) = 1. The reservation wage at 1, w*(1), solves the equation:

T

(23) w*() [Z B"’] = LV,

J=-1r

which implies that w*(T) = b. For < T we can sequentially solve tc
L,V{1) in terms of w*(s), T2 s > 1. That is, using (22a) we get

(24) L,V() = b + BE{p max{L,V( + 1), L,V(t + 3}
+ (1 = pL, vV + 1)
b+ Bp LWV + NPriw(t + 1) < w*(r + n)

+

T
BP( Z B:—(:ﬂ)E(W(! + Djw(r + 1) )

g1+

Iy

wo(t + IMPriw(t + 1) = w*(t + 1)
+ B(1 = p)L,V(t + 1),

where
wer+1)

Priwlt + 1) < wi(t + 1) = I Sowle + DY dw(t + 1),

-

Ew(t + Diwlt + D = w*(t + 1))

J' wit + Dfwlt + D) dw(r + i
we(t+ 1) )

Priw(t + D) = w*(r + 1))

and L, V(1 + 5), s = 0. s given by (22).

Equations (23), (24). and w*(T) = b jointly determine a closed form
algorithm for solving for the reservation wages, w*(), 1 = 0, 1, ..., T.
Reservation wages, given the above descriptions, are monotonically d<-
creasing.

B. Infinite Horizon (T = =) Search Model

For the infinite horizon case there is no terminal solution for the reserva-
tion wage. However, it has been proved (see, for example, I_Bcrtsckas
1976) that Equation (4) holds for all ¢ and that under certain restrictions on
the reward function, there exists a stationary solution for the value func-
tion, that is. there exists a V such that v = V) = V(Q + 1). For
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the search model

w(r)

1-8
which is equal to L. V(1 + 1)if and only if w(1) = wlr + 1). The stationary
solution 1o (20) yields a time independent reservation wage, w*, such that
dy(ry = 1 if and only if L.V(1) = wr/l = B = LV. To find w* we
substitute this solution into (22a) using (24), i.e.,

w* w* owl(r + 1) _ w*
b+BE[pmax[l_B, ]+(| p)———-——l_B]

25) L.V = win Q. B 7" =

s=1

1-B 1 - B
=b+ Pp lt‘BPr(W“ + 1)< w)
+ Bp i l B Ew( + Diwl + l)z-w‘)

x Priw(t + 1) = w*) + B(1 = p) l_”-—B-
Upon simplifying, we get an implicil equation that can be solved for a
unique w”*,

26) w*=b+p 0 9 B J’ (w — w*)[(w) dw.
For a given density function il is easy to formulate a numerical algorithm
that solves for w* when B, p, b and the parameters of f(w) are given.'®

C. Finite Horizon With Serial Correlation

Pakes’'s patent renewal model differs from the finite horizon search model
in that the reward is assumed to be serially correlated. ln this case the
reservation value that characterizes the decision of whether or not to
renew in each period depends on the actual realization of the reward in
the previous period Ry(r — 1). Recall that alternative onc signifies non-
rencwal and alternative two renewal of the patent and that

(27a) L, v() =0
and
(27b) L, V() = Rx(1)

+ BE{max[L,V(r + 1), L2V + DIR:A0. da(1) = i}.

16. For example, because (23)is a contraction mapping {see Sargent 1987), if we begun at
any arbitrary wg, and solve for w? as the nght hand side of (26). then use w as 4 ncw value
and solve (26) for w3, this process is guaranteed lo converge 1o the umique solubon.

wr
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The optimal stopping rule is characterized by an R3(1) that solves
equation L, VU) = L,V(n), or

(28) 0 = R + BE({max|0, L VU + DIIR%WD), da) = 1}

Pakes proved that under quite general conditions there exists a unique
solution 1o R3(r). He also shows under slightly more restrictive condii ot
that the reservation value is nondecreasing in 1. If Ra(n) = R3(0), &
L,V = L V). then dy() = 1.

The problem is to find a closed form solution for the second tenu .
(28). Given the finite horizon, (28) may be solved backwards starting fron
T. That is, we first find R3(T — 1), where RYT) = 0, from the equalion

RYT - D + BEIRy(MIRUT — 1) doT = 1) = 1L R(TY = 0}
x PrRy(T) = 0, RUT — 1) =0
or

(29) RWAT - 1 + BN — e - ORUT- 1)

BRUT-1)
x [BRT — 1) j gz. T) dz

0

z-glz. TY dz] — (Ml =0
ifRUT — 1) =0.

»
I&R',(T— }]

Note that because g(z. 1) is exponential, the integrals in (29) have closed
forms. Similarly. RYT — 2)1s calculated from

(30) RIAT - 2)
+ BE (L V(T — DIRAUT — 2 4T = 2 = L.RAT = D> RYT - ul
x [Pr(RUT — D, R(T = D > RUT — 1y 0

using the solution to Equation (29) for RY(T — ). This expres::. IS
somewhat more complicated to evaiuate thanis Equation (29). Pake-. ased
a computer software package 10 solve specifically for the sequc. -~ of

R0, 1 =0,1,.... T.Y

Except for the serial correlation, Pakes's solution method is the s.me
as that of the finite horizon search model. Eckstein and Wolpin (:87)
demonstrate the solution method for the search model when wage « .erS
follow a first-order autloregressive process. e wln) =awlt — 1) ).
0 < a < | and u, has a zer0 mean density function that is time invaraat.'

— . . l
17. The program is culled Mucsyma and performs analytical diﬂ'erenmpon and ints grauon.
18. 1t should be notecd that a simple matching model has a = 1, but vanances whach &, une
through ume.
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Specifically. let u,(1) be i.i.d. with mean p, and vanance o 2. The initial
wage draw, w(0), is independent of the u's and has mean po and variance
3. We assume that wage offers are positive. As already shown, the
individual works at T if w(I) = b = w*(T). Serial correiation in wage
offers does not alter the optimal stopping property of the model, nor does
it affect the existence or uniqueness properties of the optimal reservation
wage policy. Therefore, we can solve for the reservation wage sequence
recursively as before. If a wage offer is accepted the individual stays with
this wage until 7. At 7 — 1,

V(T — 1) = max{w(T ~ I} + B). b + BE(V(D)w(T - 1N}
Now

E(V(T)|{w(T - 1))

E{max(b, w(T)|w(T - 1}

u™(T)
b J dF (u(T))

+ J’ (aw(T — 1) + u(THdF (T
u(T)

where u*(T) = w*(T) — aw(T - 1), F(-)is the distribution function of «,
gnd w(T — 1)is given at T — 1. Note that the relevant information set
includes w(T — 1) because the wage process is of first order. We use the
following definition of the conditional expectations of the value function,
EWVin|w(t — 1)) = Goywlt — 1). Then, Gr_ (w(T - ) =
, E(V(T)|w(T ~ 1)) and the reservation wage at time 7 — |, w*(T — N, is
the sofution to the equation w*(T — IX1 + B) = b + BGr_(w(T — 1)).
Now, at T — 2, the value function is

V(T — 2) = max{w(T — 2)(1 + B + B, BE(V(T ~ D|w(T — D)}
As above, we solve for w*(T — 2) by first calculating

E(V(T - D|w(T - 2))

u(T-1)
= J (b + BGr_1(aw(T — 2)+ (T — DdF (T - 1)

e [ T =2 T ) U+ BEFWT = 1)

= Gr_:{w(T = 2)).
The reservation wage w*(T — 2) is found by solving the implicit equation

wH T — 2] + B + B%) = b + BGr_20w™(T ~ 2)).

ISP B R et 6 e
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Working backwards in this manner leads to a set of reservation wages
above which ofTers are accepted and below which they are declined. As in
Pakes (1986) and in the casc of time independent wages it can be shown
that G,(w) > G,. (w) due to the finiteness of the honzon, so that w*(1)
w*(t + 1), holding the prior wage realization constant.

D. Rust's (1987) Method

Rust obtained a major simplification by assuming that the error terms a.
additively separable in the reward function and that they have an extrern: .
value distribution function that is time independent and independent be
tween the different alternatives. This simplification is similar to that ob-
tained in the logit specification of static multivariate discrete choice mod-
els (McFadden 1973).

In order to apply Rust’s solution method one has to assume that the
reward function has the form

(31) R = uix(1), d(0)) + €D
where d(1) = [d(1). d2(1}, - .
density function

(32) f(e;) = exp{—e *"h

and that condition (ii), the independence assumption, also holds. The gain
from these assumptions is that the second term in Equations (19a) and (20)
can be greatly simplified. Given the extreme value distribution assump-
tion, it is straightforward to demonstrate that

(33) ELV(Q + D)din) = 1] = Elmalx{LaV(ﬂ(l + DHdi(n = D
i€

.. d/(0]. that €;(¢) has the extreme value

Z (ux( + 1)
€l

+ BEV((Q(t + Dldin) = 1)
+ v = In e + LD

where T,(r + 1) = Prid(t + 1) = 1]d{n ='1) and where v is Euler’s
constant. Note that [l,(r + 1) takes the usual multinomial logit form (sce
Section 1V, Equation (39b). below). In general, the multivanate integra-
tion necessary to calculate the left hand side of (33) docs not have a closed
form solution. However, as is evident in (33) the extreme value distribu-
lion assumption obviates the necessity of numerically computing mu!-
tivaniate integrals.

For the finite horizon case the model can be solved backwards from T
as described for the search model, using Equation (33) to evaluate the
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conditional expectations component of Bellman's equation. Application
of the method is straightforward; Berkovec and Stern (1987) huve used it
in their retirement model.

For the infinite horizon model Rust (1985) developed a nested fixed-
point algorithm to solve for the stationary value function. In particular, in
the infinite horizon case the value of alternative i, L, V({}) enters Equation
(4) through the term Elmax(L;V(Q2)ld; = D]. The solution for L,V({)
requires an algorithm that solves for the fixed point of the equation set.
The algorithm Rust developed exploits the special assumptions of his
model."

It should be emphasized that Rust’s method requires lime indepen-
dence of the error terms, but it allows any Markovian structure for the
observable vaniables in x{r). The additional assumption that the errors be
independent across altermatives, however. is not fundamental, there being
a direct analogy to nested logit in static choice models.

E. Gittins Index (Miller, 1984)

A solution method for / discrete aliernatives. the Gittins Index, has been
developed in Gittins and Jones (1974) and Gittins (1979).7® Gittins Index
applies only in the special case where the state that is relevant for alterna-
tive i, x,(1), changes from period 1 to period t + Lonlyifd,(r) = 1. that s,
xr + 1) = g)ifditn) = 1 and i # j. Changes in the state variables may
follow a Markovian transition rule, but this is not necessary for the opti-
mality of the Gillins Index (Vana et al. 1985).

The method of solution is that each alternative i has attached to it an
index at each date 1 that depends only on the state of that alternative. The
opumal choice at time 1 is that alternative with the highest index at time 1.
The advantage of this method is the fact that a possibly very complicated
problem can be reduced to the computation of only / indices at each date,
one for each altemative. In the general dynamic programming problem,
which alternative is chosen depends on the characteristics of all alterna-
lives. The Gittins Index for each alternative, however, depends only on
the characteristic of that alternative.

The structure of Miller's (1984) and Eckstein, Horsky, and Raban's
(1988) models allows for the Gittins Index solution. Equation (17) defines
the reward function, Ri(r), and Equation (18) specifies the Markovian

19. The program 1s available for usc on the 1BM-PC as pant of Gauss soltware. Rust also
developed a backwards solution method. In contrast 10 the forward method which begins
with a specification of the utility function and derives the implied value function as a fixed
pownt to a contraction mapping. the backwards method begins with a specification of the
value function and derives the implied utility funcuon and contraction mapping.

20. Later proofs and cxicnsions exist in Whittle (1982) and Varia ct al. (1985).

Eckstein and Wolpin

lrar.lsilion rule for the expected value of R; in the future, which depend-
only on M,(1), the number of peniods that alternative has been chosen. The
Gitlins Index is defined as

w—1

E Z B/ (RiJ) — \»umnm]

E[(Z B"")lnm]

where 7, is the optimal stopping time for alternative i given that alternative
i is chosen. The optimal decision rule is that di(r) = 1if V; = maxe{V,}
The index has the intuitive interpretation as the maximum discounted
expected reward per unit of expected discounted time, where the max:
imum is computed at the optimal duration (7) in an alternative. The

namic allocation index compares the expected present value of the aite:

native choices in terms ol a normalized return. The choice.that currentt;
yields the highest return is underiaken first. Because there is no depen-
dence among the different choices the computation can be done for cac!
choice separately and the value of any given alternative remains the sam

until that alternative is chosen. Miller (1984) proved that for his model th.

Gittins index can be written as
(35) Vi(vin), &) = viln) + () D(a; + M), B)

where «; = ;b7 ? is called the information factor for alternative i and

(34) Vily{1), di(1)) = sup
Tt

(36) D(a; + M,(D. P)

=1t

E[Z B 87 ORI — W) — vi(j))lﬂu)]

J=1t

= Sup +—1
E(z Bf"m(:))
j=t

This decomposition of (34) provides a simplification in the sense that ti:
index D for cach alternative is a function of only two parameters. the sum
of the information factor of the alternative and duration in the alternative
(a; + M.(1), and the discount factor (B). vi() and 5;(f) can be cor_npulcd
directly from Equation (18). and (36) is found numerically for c}hﬂqui
values of a; + M,(1) and B usinga fixed point algonthm described in Ml T
(1984, Appendix B). Miller uses a cubic spline method as a co.nvc;.nmx
functional form to compute the value function for the standarq indea 7
appealing to the contraction mapping algonthm, a method which can b
applied 10 other infinite horizon problems.

S83
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1V. Estimation Methods

Most of the following discussion considers as input to the
estimation problem a data set consisting of a panel of H individuals or
households in which, at 2 minimum, the choice of each alternative i is
observed for each individual for T, periods.

To establish notation, let the decision set for household h be
d"(n) = 5. d3. . . . . dil.
and
d* = ("), d*). . . . . d"(TW)]

where d(1) specifies the actual choice of alternative J for individual h at
time 1. Thus, d"(r) is the vector defining the choice of alternative at ume ¢
for individual h and d” is the vector describing the choice set over the
individual's observed sample period.

A. Maximum Likelihood Estimation

Full information maximum likelihood is used as the method of estimation
in most of the studies we have surveyed above. We first describe the
general case and then several specific exampies. Given data on the actual

choices of the H individuals, the likelihood function for these data is given
by

37 L

ny.,prd")

MY (P (T d" Ty = D, d(Ty = 2). . ... d"()]
(Pr(d"(Ty — DId"(Ty — 20, d(Ty = 3), . ... d"(1)
.. Prd*@)}d* (1)) Prid*(1).

The second equality is merely a decomposition of the joint probability
into conditional and marginal probabilities.

The solution of the dynamic programming model can be used to provide
a likelihood value for the parameters of the model conditional on the data
d". h = 1, ..., H. The parameters of the model which maximize the
likelihood function can then be found by a numerical nonlinear oplimiza-
tion algorithm. As in all econometric models identification of the parame-
ters is a crucial issue to which we devote some attention below.

The likelihood function given by Equation (37) already assumes that the
decisions of different individuals are independent, i.c., aggregate uncer-

wr

Eckstein and Wolp::

tainty is excluded.?! To evaluate the likelihood function without any fut

ther simplifications requires in general the evaluation of a multiple integra:
of order T,. Even if it is computationally feasible to solve the dynamic
programming model it may not be feasible to calculate the likelihoo<
function if T, is large. Developing a computationally tractable method oy
evaluating the likelihood function is crucial for the feasibility of empinca
work in which structural dynamic discrete choice models are attracti+.
characterizations of behavior.

]. Time Independent Errors
a. Search Model

In the two-state search model the necessary data consist ¢
observations on di(r). where d"(1) = 1 implies that the individual is unen.
ployed. Recall that di) = 1 = d¥(n). Itis assumed thatd?(n) = tfore <=’
and d"(z) = 0 for t = 1", where < is the period in which individua
accepted an offer. Hence, the individual is unemployed for + — | penoa:
1t may be that T > Th, in which case the spell is incompiete. Any ol
sequence of d*(1) has probability zero, i.e.. because of its optimal stoppidi..
property the model does not admit to a sequence where di(1) = 1 for ¢~
" As already noted, the solution method discussed in Section I11 ;o
vides a sequence of reservation wages, w*(1). for the finite honizon c.7=
and a single reservation wage w* for the infinite horizon case. We .o
calculate the probability of being in the two states as follows:

il
I

(38a) Pr(di) = l|dit -1 =1D= Priw(r) = w*(1)

w{r)
[ s eo

TPriw() = w*(1)) r. f(w) oo
w*(r)

(38b) Pr(di(1)

oldi(

D=0

(38c) Pr(di(n) = 0]di(t = 1) = 0) = 1,
(38d) Pr(di(n) = lld,(s = D) =0} = 0.
The conditional probabilities in (38) for d,(r) are independent of:i.(l — 83,
s=2.

The value of the likelihood function for a given value of the parameteys
of the model, {b. B. p, parameters of the wage offer density functicn} is

]

21. The existence ol aggregate shocks is irrelevant to the solution of the dynamic proxszim-
ming models. The only complication arises in the estimation. However, nonc of the stuaies
we have surveyed incorporate aggregate shocks. See Heckman (1981) for a noasuructured

motivation for (37).
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found by calculating (382) and (38b)y and substituting the result into (37)
according to the actual observation on di . h = 1. .. H. For the infi-
nite horizon case we get exactly the same conditional probability state-
ments as in (38), but w*1) = w* for all 1; the duration of unemployment
has no direct effect on the probability of accepling a job. Estimation
proceeds by iteraling over the parameter space between the dynamic
program to find the reservation wages and the likelihood function until the
maximum is achieved.

A simpie way of enriching the empirical content of the model is to allow
b. p. and f(w) 10 be functions of observable characteristics including
possibly age, schooling., family background, or ability (see. for example,
Wolpin 1987). As long as these observables are viewed as exogenous,
there is no additional complication in terms of the form of the likelihood
function. '

b. Labor Force Participation

In the labor force participation model (Eckstein and Wolpin
1988) the likelihood function has exactly the same form as does the search
model. Specifically; backward solution for the labor force participation
model yields a sequence of T reservation values of e(/). e*(r. K(n), where
K (1), experience, takes on the values r — 1.t — 2... .. Oforalls =1,
2.. .., T. Note that £*{1, K(1) is a function of a;y. az, Bo. Bi-and the
parameters of the distribution of e(r). Assume that the data on each indi-
vidual consist of T, K*(1) and d"(). Then the likelihood function (37) can
be calculated using the following probabilities:

(39a) Pridi(1) = 1K)

i
i

e, K
J S(e) de,

(39b) Pr{d,{1) HK@)

j T f(e) de.
e (1. K1)

where f() is the density function.

c. The Dynamic Multinomial Logit (Rust 1987)

We have already pointed out the computational gain of
Rust's framework in terms of computing the value function and, hence, in
solving the dynamic programming problem. However, the additive nature
of the error term in the reward function (R,(r) together with the assump-
tion that the error follows an extreme value distribution provides a simple
analytical form for the conditional probabilities for the choice of alterna-
lives. That is, using Equations (31) and (32) we get

wr
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40) Pridy = 1]xty = Sl 2 pELV(RU + DIdn = 11|
S exp {ux(n + BE(VQU + Didn = H)

JEl

The term E{V{QUt + mldw = 1] is obtained from Equation (33) by
solution methods we have already discussed. Note that all the assump-
tions made by Rust (1987) and that have been discussed above must b~
satisfied.

2. Serially Correlated Errors

In a search model (or in a patent renewal model) the probability of observ-
ing 1 periods of unemployment (or 7 periods of patent rencwal) is equal to

Priw(0) < w*(0), w(l) < w*(l), ..., wit = 1)
< w*(t - 1) w(t) > w*(1)).

In the serially independent case we have already discussed, this probabii
ity is given by the (t = 1) independent conditional probabilities showt
in (38a) and (38b). If the w(f)'s are serially correlated, this eXpression
involves a 7-fold multiple integral.

Pakes (1986), in order to allow for heterogeneity in initial draws, usc:.
simulated frequencies to empirically implement his patent rencwal modei.
For the search model with serially correlated wages this suggestion {(sc¢
also Lerman and Manski (1981)) amounts to drawing many values of w
from its distribution to get a simulated frequency for each possibie 7in the
data.t=0,...,T.The simulated frequency for a given 7 is simply the
count of the number of times the optimum is 7 divided by the number of
draws. Let P(r, 0) be the simulated frequency, given the parameter vector
@, for T unemployment periods. For each 7 there are n(v) observations in
the data. Then the pseudo likelihood function is given by

r
@y L@ = || Pa.om
Tmi \

Pakes proved the asymptotic consistency and normality of the estimated
parameters that maximize the pseudo likelihood function.

in Miller’s (1984) occupational choice model, wages follow a modified
random walk. Given a duration of T periods on a job, the hazard rate {or
switching to a new job in the same occupation is defined as

(42) ki) = Privdn) + 5,()D(a; + Mi(D). B)
<y + 5:D(ai, PIMi0) = 7}
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The term v; + 5;D(a. B) is the value of a new job in the occupation, i.e.,
M.(1) = 0. Letting P(7) be the unconditional probability of observing a
duration of T penods,

+-1
@) Pm =hm [] (- A
s=1
If n(<) is the number of individuals staying 7 periods on a job, then the
likelihood function is given by

@4y L=[] P
=1

The main difficulty is in computing h(7) for different levels of 7. To do that
the dynamic index. vi{f) and $,(1) have to be computed jointly with the
implied probability of A(1). Miller developed an algorithm for this purpose
and computed the index and h(1) for different vaiues of the underlying
parameters. Miller carmied out the estimation by searching for the highest
value of the likelihood function over a prespecified grid of values of the
parameters a and B.

B. identification

Identification is defined in terms of the conditions for existence of consis-
lent estimators for a given model and estimation method. Hence, the
conditions for identification of nonlinear models using the maximum like-
lihood estimation method is equivalent to the conditions for maximum
likelihood 10 yield consistent estimates (see. ¢.g.. Amemiya 1985). There
is no general method to check the conditions prior to estimation. How-
ever, it is possible in some cases 10 determine whether some of the param-
eters are not identified. There may be situations where parameter con-
straints due to the theory imply that the same likelihood value is
generated at every point in parts of the parameter space. For example, as
in any cconometric model, if the reservation wage in the search model
were a function of a ratio or sum of parameters, then only the ratio or sum
would be identified. This is in fact the case in the labor force participation
model where a, and a; enter only in differenced form. In some models the
reservation values have a different form at different dates in terms of the
underlying parameters (see, for example, Wolpin 1987). Hence, identifica-
tion would depend in this case on whether the data contain information on
more than one period. To be more specific consider the search or the
labor force panticipation modecl. As specified in the likelihood function,
we require that all of the parameters, including the wage distribution
parameters, be identified from the data on d,’s only. It is casy 10 demon-
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strate that some parameters of the wage function (e.g., Bo) cannot be iden-
lified unless we include observations on wages. If the wage is observed
and included in the estimation, then the likelihood function must be modi-
fied because the wage is assumed o be random. If we observed all of the
wage offers regardless of whether they were accepted we could estimate
the wage function parameters directly. Observing only accepted wages,
as is usual. leads to standard selectivity issues, but wage paramelers can
be identified either parametncally if a wage distribution is assumed
(Heckman 1979) or nonparametricalty (Ichimura and Lee 1989; Heckman
and Honoré 1988). However, efficient estimation requires that we esti-
mate the mode! jointly because the parameters of the wage function di-
rectly affect the acceptance decision.

Using wage information, the likelihood function is the joint density of
the accepted wage and the d;’s. Now. the maximization of the joint likeli-
hood must take into account the fact that the reservation wage in cach
period must be less than the smallest observed accepted wage in cach
period. (If rejected wages are observed then the reservation wage must
also be greater than the largest rejected wage offer in each period). Be-
cause there is only one source of randomness, a single outlier wage obser-
vation can have a disproportionate effect on the estimated parameters.
This problem may be avoided by introducing an additional source of
randomness. The least complicated approach, and one that is not implaus-
ible, is to assume that wages are measured with error (Stern 1989 forth-
coming, Wolpin 1987). It is the least complicated because it doesn't affec:
the computation of the reservation wage. Alternatively, one can includv
an error term representing preference heterogeneity as in Rust's specifica-
tion or in Wolpin's fertility model.

In Rust's (1987) model the state vector x(1) is assumed to be observed at
each date and governed by a parametric Markovian transition rule as in
Equation (8). 1dentification of that process requires data on x(1). The jointi
likelihood function for the observed decision d,(!) and the observed x{(1) is
a simple extension of Equation (37) explicitly taking into account the
evolution of the state space as given by (8).

C. Method of Simulated Moments

In several of the models the calculation of the likelihood function requires
multivariate integration. This is the case, for example, when the error is
serially correlated as in Pakes. These calculations are computationally
demanding and estimation in many interesting models may not be feasi-
ble. In several recent papers, McFadden (1988) and Pakes and Pollard
(1988) have developed an estimation method based on simulated, rathe.

than computed, moments. Hansen (1982) provides a general discussion o

e
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the properties of General Method of Moment estimators which are based
on orthogonal restrictions derived from a model (e.g., from Euler equa-
tions). This class of estimators belong to the general class of extremum
estimators discussed, for example, in Amemiya (1985). Avery, Hansen,
and Hotz apply this method to limited dependent variable models. The
method of moments (MOM) estimator for discrete choice models is de-
fined by

(45) 6 = argmin (d — P(0)))WW'(d — F(8))
[ ]

where

8 is the parameter vector lo be estimated

d is a vector of realized choices and

P(8) is a vector of choice probabilities

W is a set of variables which are orthogonal to d — FP(8).

The first-order condition for the MOM esumator is Wi(d - P(8)) =0,
which is an orthogonality condition between instruments and residuals. W
is a vector which is orthogonal to d — p(8). This restnction is presumably
justified by theory. The method of simulated moments (MSM) estimator
replaces P(8) with a simulated frequency, P. which is conditional on 8 and
based on simulated values of the unobserved errors using a Monte Carlo
method. McFadden (forthcoming) and Pakes and Pollard {forthcoming)
show the conditions required for the estimator of 8 1o be consistent and
asymptotically normal. The advantage of the MSM esimator is in compu-
lation because the number of simulations can be small without sacnficing
consistency. Berkovec and Stern (1987) have implemented the MSM in
their retirement model. Although the method is useful in evaluating the
likelihood function, it cannot be directly applied to the numerical integra-
tions required for solving the dynamic programming problem. The reason
is that although simulated frequencies can be used to provide unbiased
estimates of E{V(Q(1 + 1)]d,(r) = 1 for all i (see Equation 4) that expecta-
tion does not enter the likelihood function in a linear fashion. The ex-
pected value of a nonlinear function of the simulated expectation is rot
generally the same as the nonlinear function of the expectation. The MSM
does not provide a rigorous solution method for this class of problems.

V. New Methods of Estimation

In several recent papers, Hotz and Miller (1988) and Manski
(1988, 1990 forthcoming) present new approaches for the estimation of
structural discrete choice dynamic models. Both approaches recly on 2
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"sc.mi-rcduccd form"’ representation of the value function in w'hich future
choice probabilities are ireated as data rather than as functions of the
underlying structural parameters. . ' |

Because Hotz and Miller rely on the Bellman rcprescptauoq which we
have exploited throughout this survey, we will begin wlh the!r formula-
tion. The general computational problem associated with sotving the dy-

pamic program comes in evaluating the expression

(46) E(V(l + l)ld((t)) = E[ma_lx L.V(n(l + l)|dl('))]-
i€

As we have noted if we adopt Rust’s assumptions this expression has a
closed form representation given by (33); in general, a closed form expre:

sion will not exist. Using (33), however, by continued forward_ substitu

tion for E(V(2(r + 2)|di(r) = 1)) etc. in (33), (46) can be wnitien as a:
function of Euler’s constant, utility parameters, and future conditionai
choice probabilities, i.e., Pridi(t + 1)|di(n)) = 1, etc. 1f we have data on
future choices, then these probabilities can be calculated 'from the sampie
proportions, and Equation (46) can be used in the calculation of lbc p_robz:—
bility statements in (40) which are necessary to eva.lu.mc the likelihoo?
function. Hotz and Miller showed that Bellman's equation can alw:.xys be
written as a function of the per-period utilities and future condition
choice probabilities.

Itis ::crhaps casiest to see this in the finite horizon.search mpdcl. The
idea is to write Equation (24) in terms of future conditional c.h_oncc proba
bilities, in this case the probability of accepting an offer conditional on no.
yet accepling an offer. The only expression not written alrcady.a> a
choice probability in (24) is the expression E(w( + l))|w(l. +)=w o+
MPriwg + 1) = wot + 1)) Obviously this expression is .afl{ncl{on o
w*(r + 1) as shown after Equation (24) and depends on the distribution <.
w. From the data, given a sample proportion of individuals who accep: ar
offer at time ¢ + 1 and given a density function f(w), we can always ﬁno
the implied reservation wage which equates the probability of working
with the sample proportion. Given the reservation wage onc can calcu;axs~.
the value of E(w|w = w*)Pr(w = w*), which is then implicitly a funct: >--
of the choice probability. As before, onc can then solve Equa\uon .‘25"
forwards by substituting for L, V(t + 1) etc. Using (23) we can‘_fmd the
reservation wage at ¢ to be used in estimation according to Equauon (2o

The gencral model analyzed by Hotz and Miller has the sam; form: a
our general model of Section 11 In principle, the errors assoc_la(cd with
cach of the aiternatives need not be independent across alternatives. They
must each, however, be serially independent because future condu..ona}
probabilities cannot be calculated from observed sample frcqufencu:s f
the former are based on an unobservable state. Individual-specific unob-
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served heterogeneity is also in general not permissible, although Hotz and
Miller's application to labor supply and contraceptive choice discussed in
Section 1l is sufficiently separable to allow its incorporation. Hotz and
Miller prove consistency and asymptotic normality of their estimator.

The essential ingredients in Hotz and Miller's econometric implementa-
tion of their fertility model are as follows. First. because of separability in
the preference function and the assumption of complete markets, the
parameters associated with the child care requirement. the wife’s lcisure
decision and the wage equation are estimated independently of the con-
traceptive choice process. Second, nonparametric kernel estimators of
the conditiona! choice probabilities associated with contraceptive deci-
sions conditional on birth histories are formed and sample estimates ob-
tained. These conditional choice probabilities are thep used to calculate
the value function as described above. Under the extreme value distribu-
tion assumption the choice probabilities obtained by comparing value
funclions for alternative contraception choices has a multinomial logit
characterization. Hotz and Miller use orthogonality conditions to esti-
mate the contraceplive choice parameters.

Manski does not begin with the Bellman equation. He develops an
alternative representation which he calls **path utility”” analysis. Manski
shows that the solution to the foliowing problem is equivalent to the
backward solution of the Bellman equation:

(47) mealJ(E V(RW), ..., Rt — 1), R0,
- R + 1), ... .R(MIdWO), ... .du — 1, ddn)
P(R(z + 1), . ... R(TLIRAD),
R — 1), ..., RO, d(0), dt ~ D, ..., dl0)
ateacht = 0, ..., T, where Fis the set of all possible values of the future
rewards (R( + I), . ... R(T)) and P(-{-) is the subjective distribution of

the future rewards conditional on the current choice d,(r) and reward R;(r)
and on all past choices and rewards. Notice that this is a static problem if
the conditional **path probabilities’” are known or can be estimated.

Manski shows that these subjective probabilitics are estimable from
observations on all past, current, and future decisions and rewards if:
(1) There exists a sufficient statistic, r, for the conditioning elements of
P(-]-), such that

(48) P(R(t + 1), ..., R(T).IRiN),
R(t — 1), ....,R0), d(n,dlt — 1), ...,d0O)
.. R(T) R,

r(R(r — 1), R(0), din), . . ., d(0).

= P(R(t + 1), .

s
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The sufficient statistic is necessary because every agent with a particular
history (R(t — 1), . ... R(0), du - 1. ..., d(0)) will choose the same
alternative d;(7). It is impossible then 1o estirate the entire conditional
distribution of future rewards because only one alternative will ever be
chosen for a given history. The sufficient statistic maps many histories
into a single value.

(2) Expectations are rational in the sense that P(-|-) is the true conditional
probability distribution that would be derived from the full optimization of
the dynamic program, and

(3) Realizations of rewards are statistically independent across individ-
uals: otherwise, it is clear that population frequencies will not correspond
to any single individual’s true subjective probability.

Manski next shows that one can relax the assumption that histories are
entirely observed if conditional path probabilities can be decomposed into
two parts, a part which is conditioned on unobserved history and a part
which is conditioned on observed history. The first part is addressed by
specifying a parametric distribution for the unobserved history. The sec-
ond part is estimated nonparametrically. Finally, an estimation error is
introduced by allowing the objective function to have an additive compo-
nent which depends on unobserved history. Consistency of the parame-
ters associated with the objective function (47) is demonstrated in Manski
(1990, forthcoming).

As in Hotz and Miller, serial correlation which connects future and past
rewards cannot be accommodated because the entire future is then con-
ditioned on unobserved history. Similarly, the existence of unobserved
individual-specific permanent heterogencity leads to the same problem
unless its effect operates entirely through past decisions. Unlike Hotz and
Miller. in Manski's formulation expectations can be conditioned on unob-
servables as long as the decomposition restriction is met, and expecta-
tions need not conform to the rational cxpectations assumption, but the
estimation error cannot take on the form given in the general model of
Section 1l in the sense that only a single additive disturbance at onc
moment in time is permissiblc. As noted, Manski's method also requires
the existence of a sufficient statstic, the plausibility of which is model-
specific. '

The advantage of these rather ingenious semi-reduced form ap-
proaches, regardiess of how one weighs their relative merils, is primarily.
and not unimportantly, computational tractability.** Hotz and Miller’s

22. An imporant concem in implementation is computational cost. The compulations:
burden can vary enormously depending on the number of alternatives, the size of the state
space, the distributional assumptions, and the method of solution. Rust (1987) implementecd
his modcl of bus cngine replacement ona personal compultcr, while most of the other papers
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model, for example, would not be tractable using current full solution
methods. A number of disadvantages should also be noted. These mcth-
ods ignore the parameter restrictions embodied in the full solution,
namely those between the future conditional probabilities and the current
probabilities. Not only will estimates be less efficient if the model’s re-
strictions embodied in the implicit rational expectations assumption is
correct, bul some parameters which might be identified by these addi-
tional restrictions may not be identified. For example. because the offer
probability in the search model enters only in the future component of the
value function and thus gets impounded in the future conditional choice
probabilities of Hotz and Miller or the path probabilities of Manski, it is
inherently unidentifiable in the semi-reduced form method.

In addition, these methods require that the researcher have data from
which to estimate the future choice or path probabilities. Without observ-
ing choices over an entire life cycle, it is necessary 10 use synthetically
derived cohorts. So the method requires either that there are no cohort
effects or that they are ignored by the individual in forming forecasts. of
course. full solution methods must specify and estimate equation of mo-
tion for all forcing vanables which for the same reason will require ex-
trapolations beyond current sample ages. However. cohorts effects need
not be ignored in making thesc forecasts. Furthermore, this method
places additional burdens on the data in another dimension. There needs
to be enough observations so that choices which are not extremely rare
are observed. Although one can appeal to asymptotics as Hotz and Miiler
(1988) and Manski (1988, 1990 forthcoming) do. one might expect that
when data are very sparse nonparametric estimates of the future probabil-
ities would have significant small sample bias in the case of nearest neigh-
bor estimation or large standard errors in the case of kernel estimation.

An alternative to either the full solution method or the semi-reduced
form method is to develop approximate solutions which trade off between
compulational and data limitations. For example, Wolpin (1989) assumes
that the length of the optimization period varies directly with the distance
from the current decision period. Thus, as viewed from the present the
optimal decision rule say len years hence may be approximated as an
annual decision while the optimal decision rule now may be made weekly.
The idea is that discounting makes future errors in optimization less im-
portant. It would be better, of course, if such a method could be rational-
ized as an optimal strategy given computational limitations.

required a mainframe. Our own experience for the size of problems we have been esimaling
is that ooe would need quite possibly 100 hours or more of a large mainframe. Also, in
general, esumation of these models requires independent programmng of the dynamic
program soluuon interfaced with a standard noalincar opliruzation rouunc such as GQOPT.
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A second alternative would be to approximate the value functios: a
some point in the life cycle and use that as the “‘terminal’” period in a ful:
solution method. Unfortunately, if the state space is large this may en:ay
the estimation of a large number of incidental parameters, and again -
may not be an optimal stralegy when viewed as a trade-off between €.
putational costs and optimization error. Another alternative would b v
calculate the multiple integrals in the dynamic program by Monte Caine-
integration and to check the sensitivity of parametric estimates to the
number of draws used for the integration. Thinking along the lines
developing approximations seems 10 us 1o be a possibly fruitful apprc s

VI. Concluding Remarks

The literature we have surveyed concerns the solution and
estimation of structural dynamic stochastic discrete choice models. The
models can be viewed as an extension of existing qualitative choice mod-
els. Qualitative choice models have been applied to the interpretation of
data in labor economics, transportation economics, and a number of uther
fields. The incorporation of intertemporal elements using the methods we
have discussed enables researchers 1o investigate observed intertempotal
dependencies that cither have been ignored or not treated in a struciural
manner. Given our current state of knowledge, the approach is limite s by
the availability of data and by computational constraints. It is our vizw
that the discovery of new methods of solution and estimation as .:2%¢
already begun to appear and ongoing innovations in computer technGiogy
will allow these methods to be used in more and more complex behavioral
settings.

The methods that we have described above currently can be apphied 10
many additional problems that have been of interest to labor economiss.
The question of geographic migration takes the natural form of a stcchas-
tic dynamic discrete choice problem. Marriage, divorce, schooling, and
investments in children all clearly have dynamic elements. In our view,
the methods surveyed here can provide the analytical tools and econo-
metric methods for developing solid theoretically based empirical anal-
yses of these issues. )
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AFDC and the Formation
of Subfamilies

Robert Hutchens
George Jakubson
Saul Schwartz

ABSTRACT

This paper analyzes the relationship berween AFDC benefits
and a single mother's propensity to reside in a subfamily—i.e..
within another family rather than in her own independent house-
hold. We find that some states pay lower benefits 1o mothers liv-
ing in subfamilies. In those states. a single mother may forego
a substantial amount of AFDC benefits if she chooses to reside
in a subfamily rather than establish her own household. Using
data from the 1984 Current Population Survey, we address the
question of whether differences in AFDC benefits affect the
probability that a mother will reside in a subfamily. We find
that the lower benefits paid 1o subfamilies have discernible bui
small effects, and that the averall level of AFDC benefits has
no effect.
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